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Integration Basic Definitions

Basic Definitions

The definition of the integral of a real-valued function f : A — R defined

on a rectangle A C R" is almost identical to that of the ordinary integral
when n = 1.

Let [a, b] be a closed interval of real numbers. By a partition P of [a, b] we
mean a finite set of points xg, x1,...,x, with a=x9 < x; < ... < x, = b.
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Integration Basic Definitions

Given a closed rectangle
A= [317 bl] X ... X [a,,,bn]

in R”, a partition of A is a collection P = (P4, ..., P,) of partitions of the
intervals [a1, b1], ..., [an, bn] which divides A into closed subrectangles S in
the obvious way.

Suppose now that A is a rectangle in R” and f : A — R is a bounded
real-valued function. If P is a partition of A and S is a subrectangle of P
(we'll simply write SeP), then we define

ms(f) = GLBf(x) : xeS

Ms(f) = LUBf(x) : xeS.
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Integration Basic Definitions

Let vol(S) denote the volume of the rectangle S, and define
L(f,P) = Xsepms(f)vol(S) = lower sum of f wrt P
U(f,P) = XsepMs(f)vol(S) = upper sum of f wrt P.

Given the bounded function f on the rectangle A C R”, if
LUBpL(f,P) = GLBpU(f, P), then we say that f is Riemann integrable
on A, call this common value the integral of f on A, and write it as

/f_/ dx_/ F(X1y ey Xn)dX7...dXp.
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Integration Measure Zero

Measure Zero and Content Zero

Definition
A subset A of R" has (n-dimensional) measure zero if for every £ > 0 there

is a covering of A by a sequence of closed rectangles U;, U, ... such that
Yvol(U;) < e.

Remark
Note that countable sets, such as the rational numbers, have measure zero.

Definition
A subset A of R"” has (n-dimensional) content zero if for every ¢ > 0 there

is a finite covering of A by closed rectangles U;, Uy, ..., Uy such that
vol(Uy) + vol(Up) + ... + vol (Uy) < e.

Remark
Note that if A has content zero, then it certainly has measure zero.
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Integration Integrable Functions

Integrable Functions

Let AC R" and let f : A— R be a bounded function. For § > 0, let
M(a, f,0) = LUB{f(x) : xeA and |x — a| < ¢}
m(a, f,d) = GLB{f(x) : xeA and |x —a| < d}.
Then we define the oscillation, o(f, a), of f at a by
o(f,a) = lims_o[M(a,f,d) — m(a, f,?d)].

This limit exists because M(a, f,d) — m(a, f,d) decreases as § decreases.
The oscillation of f at a provides a measure of the extent to which f fails
to be continuous at a.
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Integration Integrable Functions

Theorem
Let A be a closed rectangle in R” and f : A — R a bounded function. Let

B ={xeA: f is not continuous at x}.

Then f is Riemann integrable on A if and only if B has measure zero.
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Integration Integrable Functions

Generalizing to Bounded Sets

If C C R", then the characteristic function y ¢ of C is defined by
Xc(x) =1if x liesin C and xc(x) =0 if x does not lie in C.

If C C R” is a bounded set, then C C A for some closed rectangle A. So if
f: A— R is a bounded function, we define

/fz/fxC,
C A

provided that fx ¢ is Riemann integrable. According to the homework, this
product will be Riemann integrable if each factor is.
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Integration Fubini's Theorem

Fubini's Theorem

In freshman calculus, we learn that multiple integrals can be evaluated as
iterated integrals:

[ tendde= [ ([ fey)dnox
[a,b] X [c,d] [a,b] J[e,d]

The precise statement of this result, in somewhat more general terms, is
known as Fubini’s Theorem.

When f is continuous, Fubini's Theorem is the straightforward
multi-dimensional generalization of the above formula.
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Integration Fubini's Theorem

When f is merely Riemann integrable, there is a slight complication,
because f(xp, y) need not be a Riemann integrable function of y. This can
happen easily if the set of discontinuities of f is xp x [c, d], and if f(xo,y)
remains discontinuous at all ye[c, d|.

Before we state Fubini's Theorem, we need a definition.

If f: A— R is a bounded function defined on the closed rectangle A,
then, whether or not f is Riemann integrable over A, the LUB of all its
lower sums, and the GLB of all its upper sums, both exist. They are called
the lower and upper integrals of f on A, and denoted by LfA f and

U [, f, respectively.
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Integration Fubini's Theorem

Theorem (Fubini’'s Theorem.)

Let AC R" and A’ C R" be closed rectangles, and let f : Ax A’ — R be
Riemann integrable. For each xeA, define gy : A’ — R by gi(y) = f(x,y).

Then define
MMZL/kazL/fUJMy

Ux)=U [ g=U[ f(xy)dy.
A A
Then £ and U are Riemann integrable over A, and

/AxA/ F= /AE = /A(L/A/ f(x, y)dy)dx
/AxA/ = /A“ = /A(U/A, f(x, y)dy)dsx.
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Integration Fubini's Theorem

Proof. Let P and P’ be partitions of A and A, and P x P’ the
corresponding partition of A x A’. Then

L(f, P x Pl) = sts/epxp/msxs/(f)vo/(s X 5/)

= Tsep(Xsreprmsxsi(f)vol(S'))vol(S).
If xeS, then clearly msys/(f) < ms/(gx). Hence

ZS/Ep/mSXSI(f)vol(S’) < Zs/ep/msf(gx)vol(S’) < L/ 8x = ﬁ(X)
A/

Therefore

ZSGP(ZS/EP/mSXS/(f)vo/(S’))vol(S) < L(L,P).
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Integration Fubini's Theorem

Hence
L(f,P x P’) < L(L,P) < U(L,P)<UU,P) < U(f,P x P’),

where the proof of the last inequality mirrors that of the first.
Since f is integrable on A x A, we have
LUB L(f,P x P")= GLB U(f,PxP’):/ f.
AxA’

So by a squeeze argument,
LUB L(L,P)=GLB U(L,P)= / L :/ f.
A AxA!

Likewise, [,U = [, o f. completing the proof of Fubini's Theorem. [J
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Integration Fubini's Theorem

Remark

If each gy is Riemann integrable (as is certainly the case when f(x, y) is
continuous), then Fubini's Theorem says

/Afo F= /A(/A f(x,y)dy)dx,
/Afo F= /,(/A f(x,y)dx)dy.

One can iterate Fubini’s Theorem to reduce an n-dimensional integral to
an n-fold iteration of one-dimensional integrals.

and likewise,

Remark
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Integration Partitions of Unity

Partitions of Unity

Theorem

Let A be an arbitrary subset of R" and let U be an open cover of A. Then
there is a collection ® ofC*°functions ¢ defined in an open set containing
A, with the following properties:

For each xeA, we have 0 < ¢(x) < 1.

For each xeA, there is an open set V' containing x such that all but
finitely many ¢e® are 0 on V.

For each xeA, we have ¥ 40 ¢(x) = 1. Note that by (2) above, this is
really a finite sum in some open set containing x.

© © 060

For each ¢e®, there is an open set U in U such that ¢ = 0 outside
some closed set contained in U.
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Integration Partitions of Unity

A collection @ satisfying (1) - (3) is called a C* partition of unity.
If ® also satisfies (4), then it is said to be subordinate to the cover U.

For now we will only use continuity of the functions ¢, but in later classes
it will be important that they are of class C°.
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Integration Partitions of Unity

Proof of Theorem.

Case 1. A is compact.
Then AC Uy U Uy U ... U Ug. Shrink the sets U;. That is, find compact
sets D; C U; whose interiors cover A.

Let 9); be a non-negative C* function which is positive on D; and 0
outside of some closed set contained in U;.

Then 11(x) 4+ ¥2(x) + ... + ¢k(x) > 0 for x in some open set U containing
A. On this set U we can define

Yi(x)
(P1(x) + o+ r(x))

pi(x) =
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Integration Partitions of Unity

If f:U—[0,1] is a C* function which is 1 on A and 0 outside some
closed set in U, then

& ={fé1,....fpr}

is the desired partition of unity.
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Integration Partitions of Unity

Case 2. A= A; UAy,UA3U... where each A; is compact and
A; C int(A,-+1).
For each i, let

U, = {U N (int(AiJr]_) — A,',g) : UEU}
Then U; is an open cover of the compact set B; = A; — int(Aj_1).

By case 1, there is a partition of unity ®; for B; subordinate to U;.

For each xeA, the sum o(x) = L4¢(x), over all ¢ in all ®;, is really a
finite sum in some open set containing x. Then for each of these ¢, define
¢'(x) = G(Xg The collection of all ¢/ is the desired partition of unity.
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Integration Partitions of Unity

Case 3. A is open.
Define A; = {xeA : |x| < i and dist(x, 0A) > 1} and then apply case 2.

Case 4. A is arbitrary.

Let B be the union of all U in U. By case 3, there is a partition of unity
for B. This is automatically a partition of unity for A. This completes the
proof of the theorem.[]
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Integration Change of Variable

Change of Variable

Consider the technique of integration by “substitution”. To evaluate
[2_,(x2 — 1)32xdx, we may substitute

x=1

y:X2_17
dy = 2xdx
x=1iffy=0, x=2iffy =3.

Then ) 5
/ (x? — 1)%2xdx = / y3dy
x=1 y=0

__ZiP__,gl
410~

4
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Integration Change of Variable

If we write f(y) = y® and y = g(x) = x*> — 1, where g : [1,2] — [0, 3],
then we are using the principle that

g(2)

/ _ F(e(x))e' (x)x = / F(y)dy,

=g(1)

b g(b)
/ (fog)g' = / f.
a g(a)

Proof. If F/ = f, then (Fog) = (F'og)g’ = (f o g)g’, by the Chain
Rule. So the left side is (F o g)(b) — (F o g)(a), while the right side is
F(g(b)) — F(g(a)).

or more generally,

Ryan Blair (U Penn) Math 600 Day 2: Review of advanced Calcult Tuesday September 14, 2010 24 / 36



Integration Change of Variable

Here is the general theorem that we will prove.

Theorem (Change of Variables Theorem.)
Let A C R" be an open set and g : A — R" a one-to-one, continuously

differentiable map such that det(g’(x)) # 0 for all xeA. If f : g(A) = R is
a Riemann integrable function, then

/g(A) F= /A(f o g)|det(g’)l.

Proof The proof begins with several reductions which allow us to assume
that f = 1, that A is a small open set about the point a, and that g’(a) is
the identity matrix. Then the argument is completed by induction on n
with the use of Fubini's theorem.
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Integration Change of Variable

Step 1. Suppose there is an open cover U for A such that for each Ueld
and any integrable f, we have

/g(u) f= /U(f o g)|det(g")|.

Then the theorem is true for all of A.
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Integration Change of Variable

Proof.The collection of all g(U) is an open cover of g(A). Let ® be a
partition of unity subordinate to this cover. If ¢ = 0 outside of g(U),
then, since g is one-to-one, we have (¢f) o g = 0 outside of U. Hence the
equation

of = /U ((¢f) 0 &)\ det(g")|

g(U)
can be written

of = /A ((6) 0 &)\ det(g)].

g(A)

Summing over all ¢e® shows that

/g(A) f= /A(f o g)|det(g’)|,

completing Step 1.
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Integration Change of Variable

Step 2. It suffices to prove the theorem for f = 1.

Proof. If the theorem holds for f = 1, then it also holds for f = constant.

Let V be a rectangle in g(A) and P a partition of V. For each
subrectangle S of P, let fs be the constant function mg(f). Then

L(f, P) = Zsepms(f)VO/(S) = ZSEP/ f5
int(S)

~Tsp [ | (Gog)de(d)
g~ 1(int(S))

<Ysp / (f o g)|det ()|
g~ 1(int(S))

= [ (rog)den(e)
g (V)

Since [\, f = LUBp L(f,P), this proves that

/f</ (f o g)|det(g")].

Ryan Blair (U Penn) Math 600 Day 2: Review of advanced Calcult Tuesday September 14, 2010

28 / 36



Integration Change of Variable

Likewise, letting fs = Ms(f), we get the opposite inequality, and so

conclude that
/f—/ (f o g)|det(g")].

Then, as in Step 1, it follows that

/g(A) F= /A(f o g)|det(g’)|-
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Integration Change of Variable

Step 3. If the theorem is true for g : A — R" and for h: B — R", where
g(A) C B, then it is also true for hog: A — R".

/ f:/ f:/ (F o h|det(H)
g Jnaan ey

_ /A[(f o h) o gll|det ()| o g]|det(g")

Proof.

:/A[fo(hog)]\det((hog)/)’-
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Integration Change of Variable

Step 4. The theorem is true if g is a linear transformation.

Proof. By Steps 1 and 2, it suffices to show for any open rectangle U that

/g RE | et

Note that for a linear transformation g , we have g’ = g. Then this is just
the fact from linear algebra that a linear transformation g : R” — R”
multiplies volumes by |det(g)|.
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Integration Change of Variable

Proof of the Change of Variables Theorem.

By Step 1, it is sufficient to prove the theorem in a small neighborhood of
each point aeA.

By Step 2, it is sufficient to prove it when f = 1.

By Steps 3 and 4, it is sufficient to prove it when g’(a) is the identity
matrix.

We now give the proof, which proceeds by induction on n. The proof for
n =1 was given at the beginning of this section. For ease of notation, we
write the proof for n = 2.
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Integration Change of Variable

We are given the open set A C R” and the one-to-one, continuously
differentiable map g : A — R" with det(g’(x)) # 0 for all xeA.

Using the reductions discussed above, given a point acA, we need only find
an open set U with aeU C A such that

[ 1= [ |decte)
g(V) u

and in doing so, we may assume that g’(a) is the identity matrix /.
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Integration Change of Variable

If g : A— R? is given by
g(x) = (81031, %2), &2(x1, x2)),
then we define h: A — R? by
h(x) = (g1(x1, x2), x2).

Clearly h'(a) is also the identity matrix /, so that by the Inverse Function
Theorem, h is one-to-one on some neighborhood U’ of a with
det(h'(x)) # 0 throughout U’. So we can define k : h(U') — R? by

k(Xl,Xz) = (Xl,g2(h_1(x)))’

and we'll get g = ko h. Thus we have expressed g as the composition of
two maps, each of which changes fewer than n coordinates (n = 2 here).
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Integration Change of Variable

By Step 3, it is sufficient to prove the theorem for h and for k, each of
which (in this case) changes only one coordinate. We'll prove it here for h.

Let ae[ci, di] X [c2, d2]. By Fubini's theorem,

/ 1 I/ (/ 1dX1)dX2.
h([Cl,dl]X[Cg,dg]) [C2,d2] h([Cl,dl]X{Xg})

Define h|y, : [c1,di] — R by (h|x,)(x1) = g1(x1, x2). Then each map h|,,
is one-to-one and

det((hly,) (x1) = det(H (x1,x2)) # 0.
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Integration Change of Variable

Thus, by the induction hypothesis,

/ 1= / (/ 1dX1)dX2
h(ler,di]x [e2,c]) [e2,c2] / (hlx2)([er,dn])

_ / ( / det((hl)') (0, x0) st )dso
[c2,d2] Je1,d1]

/ / det(h')(x1, x2)dx1 ) dxo
[e2,do] Vet dh]

/ det(h’)(xl, X2)dX1 dxo
C1,d1]>< C2,d2]

= / det(h'),
[Cl,dl] X [CQ,dQ]

completing the proof of the Change of Variables Theorem.
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